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Abstract

We develop an endogenous growth model driven by externalities from both pri-

vate and public capital. The government levies distortionary taxation to finance

a publicly provided consumption good and public infrastructure. Firms face ad-

justment costs. We compare the optimal and time-consistent policies in a linear-

quadratic approximation of the model. Although the time-consistent equilibrium

is sub-optimal in terms of ex ante intertemporal welfare, it yields higher long-run

growth and welfare, through an accumulation of assets by the state and a cut in

government consumption.
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I Introduction

This paper studies a model of fiscal policy with endogenous growth which is dynamic

in three ways. First, it models both private and public capital as stocks rather than

flows. Second, it is non-Ricardian with distortionary taxes, finite lives and population

growth. The choice between debt or taxation financing of a given path of government

spending affects GDP growth and we do not impose a balanced budget. These two

features imply that the model has transitory dynamics, a characteristic that is absent

from many papers in the fiscal policy and endogenous growth literature. Third, the

model allows for dynamic fiscal policy; in particular we allow governments to choose a

different tax rate and spending level in each period.

The model incorporates a private sector and a government. The government may

spend on a publicly-provided consumption good and on augmenting an infrastructure

stock that provides for an externality in the production of firms. In the steady state, the

government maintains this input in production as a constant fraction of GDP. Therefore

the marginal productivity of capital is bounded away from zero and perpetual growth

is possible. This type of model is pioneered by ?). He models a single-good world

where production is a function of labour in inelastic supply, a capital stock that does

not depreciate, and the flow of public services. The main result of that paper is that

welfare is maximized when growth maximized. Some of the subsequent literature has

been concerned with welfare maximization in the context of more elaborate models

where this result may no longer hold.

?) consider the case where both private and public capital stock depreciate fully

during the period and preferences are logarithmic. Rather then assuming constancy

of the tax rate, they derive the result that the optimal rate is constant. ?) extends

?) to include government consumption. It turns out that the government consumption

is lower, and that government investment is higher, under welfare maximization than

under growth maximization. This point is also emphasised by ?) who introduce infras-

tructure as a stock rather than a flow. This is more realistic but makes an intertemporal

welfare analysis analytically intractable. Despite these technical problems, ?) show that

an equilibrium exists under very general conditions, provided that the government can

precommit to a sequence of government expenditures. An example for such an equi-
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librium is developed in ?). He models public capital as a stock, the services of which

are subject to congestion. There are no adjustment costs, public and private capital

can be costlessly transformed one into the other. In that way the model ends up with

a single state variable which is the ratio of the two stocks. There is a fairly elaborate

array of financing options, including consumption taxes, income taxes and lump-sum

taxes or transfers. He first computes the first-best where a benevolent planner will di-

rectly allocate consumption and investment in the two stocks. The instruments of fiscal

policy are sufficient to replicate the first best. During the transition to the optimum

steady state, the private capital stock growth rate overshoots and the growth rate of

the infrastructure stock undershoots. Thus both reach the common long-run growth

rates from opposite sides.

There is a whole strand of the literature that does not attempt a full welfare analysis

and therefore can reach analytical results for give policy changes. ?), ?), ?), and ?) all

use a model with government capital to examine the effects of a given fiscal policy. For

example, ?) model public capital as a stock to consider the case where it is subject

to congestion. In the absence of congestion, an increase in the infrastructure stock,

financed through a lump-sum tax, increases the long-run private capital stock if both

factors are complements in production. If the degree of congestion is large, the increase

in public infrastructure will lead to a fall in the private capital stock, provided that the

substitutability of both factors is low. In a similar vein, ?) examine a variant of the

basic model with endogenous labour supply and show that this model can account for

much of the recent US growth experience. Finally there is a separate strand of literature

that examines fiscal policy in real business cycle models, see for example ?).

Our model departs differs in significant ways from all the papers mentioned so far.

First we use the non-Ricardian ?)-?)-?) demand framework for a realistic assessment of

fiscal policy. Second, we allow for time-varying taxation and government spending and

explicit policy optimisation by the government in a situation where the first-best can not

be a achieved in equilibrium. Finally we characterize the optimum and time-consistent

policy trajectories, even though the exact values are dependent on the parameters of

the model. There is no free lunch of course—all these extensions require numerical

simulation and therefore our results to not have the general power of analytical results.

The rest of the paper is organized as follows. Section II sets out our model. Section
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III uses simulations on a calibrated model to compare the optimal precommitment fiscal

policy with the time-consistent policy. Section IV concludes the paper.

II The Model

Our model treats both households and firms as intertemporal maximizers in a fairly

standard fashion. We describe the behaviour of households, firms and the government

in a closed economy.

Households

We consider a population of identical households who face a constant probability of

death m per period. It grows at the exogenous rate g. All individuals enjoy logarithmic

felicity V (t) = ln C(t) + η ln Gc(t) from consuming a private consumption commodity

C(t) and a publicly provided consumption commodity Gc(t). They discount at a rate d

and face a constant probability m of dying in each period. By virtue of this exponential

lifetime assumption, their expected lifetime utility is independent of age and given by

U(t) =
∞∑

t′=t

(
1 − m

1 + d

)t′−t

V (t′) (1)

where we use the uppercase letters to express magnitudes on a per-person level.

Every household is endowed with a unit of labour that she supplies inelasticly to

the market in exchange for a post-tax wage W (t). At the end of any period t − 1, we

can define her human wealth H(t − 1) as the present value of the current and all future

expected wages, discounted at the post-tax interest rate rτ (t) = r(t) (1 − τ(t)), where

τ(t) is the tax rate on all income (labour and capital) of households:

H(t − 1) =

∞∑
t′=t

(1 − m)t′−t+1 W (t′)
1 + rτ (t′ − 1)

(2)

Human wealth is the same for all living individuals, irrespective of their age, because

they all face the same death rate and because the wage is not dependent on age. That

does not mean, however, that households of all ages will have the same consumption,

because recently born households have no non-human wealth, which they only start

accumulating after birth. Non-human wealth X(t) takes the form of physical capital or

government bonds, and because of arbitrage between both types of assets, they must

earn the same return. At time t the household born in t′ < t has some non-human
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wealth X(t′, t − 1) at her disposal that she accumulated up to the end of period t − 1.

When the household dies she leaves an unintentional bequest, her non-human wealth,

at the beginning of the period where death occurs. To model this set-up the following

construction is introduced. There is an insurance company that takes the financial

post-tax wealth of each dead household. It then distributes these assets as a premium

p paid on the holdings of assets. If the insurance company has no operating cost, the

premium satisfies the zero-profit condition: 1 + p − 1/(1 − m) = 0. Hence we have the

dynamics of non-human wealth as:

X(t′, t) =
(1 + rτ (t − 1)) X(t′, t − 1)

1 − m
+ W (t) − C(t) (3)

If we solve the period-to-period budget constraint (3) forwards in time and make the

conventional transversality assumption that the present value of future wealth will tend

to zero, the lifetime budget constraint of a household born at time t′ is:

X(t, t) =

∞∑
t′=t+1

(1 − m)t′−t [C(t′) − W (t′)]
1 + rτ(t − 1, t′ − 1)

= 0 (4)

since there are to bequests and where we have defined the interest rate between period

t and t′ − 1 as:

1 + rτ (t, t′ − 1) =

t′∏
t′′=t

(1 + rτ (t′′ − 1)) (5)

and rτ(t, t) = rτ(t). The household’s problem is to maximize (1) under (4). The familiar

first order condition is:

C(t′)
C(t)

=
1 + rτ (t − 1)

1 + d
(6)

This completes the study of the individual household. All households of the same

age are identical, but households of different ages have different non-human wealth. We

therefore need to aggregate over different age levels. This leads to a “Yaari-Blanchard”

demand function1, which may be written as:

0 =

(
m + g

1 + g
− 1 + d

1 − m

)
c(t) +

1 + r(t − 1) (1 − τ(t))

1 + n(t)
c(t − 1)

− (m + d) (m + g)

(1 − m)(1 + g)
x(t)

(7)

1Details of the aggregation procedure are given in the working paper version ?). See also ?) for a

continuous-time version of (7). Note that in the Ricardian case m = g = 0 and (7) gives us the familiar

Keynes-Ramsey rule.
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Here the lower-case variable c(t) refers to aggregate level consumption in per-GDP form2

n(t) = [Y (t) − Y (t − 1)]/Y (t − 1) is the rate of growth of GDP.

Wealth is composed of physical capital k(t) and government debt d(t):

x(t) = d(t) + k(t) (8)

The next two subsections deal with the accumulation of these assets.

Firms

Capital evolves under the impact of depreciation and investment as in (16). Investment

is given by the solution of a profit maximization problem as follows. Imagine a large

number of identical firms. We use uppercase notation for per firm levels. For every

date t′ > t, the problem of each firm is to choose investments I(t′), and employment

L(t′) that maximize the discounted sum of future profits:

∞∑
t′=t

Y (t′) − w(t′) ε(t′) L(t′) − I(t′) [1 + a((I(t′) − (n(t′) + δ) K(t′ − 1))/K(t′ − 1))]

1 + r(t − 1, t′ − 1)
(9)

where r(t − 1, t′ − 1) is defined in the same way as (5).

The function a(·) in the expression (9) gives adjustment costs that the firm pays

when investing. We make the usual assumptions that a′(·) > 0, a′′(·) > 0, and a(0) = 0.

Since I(t) = (n + δ) K(t − 1) on a balanced growth path, the last assumption implies

that there are no adjustment costs in this set-up.

Output is given by the Cobb-Douglas production function:

Y (t) = K(t − 1)α [ε(t) L(t)]1−α (10)

Here ε(t) is the efficiency of the labour force L(t). We adopt the approach to endogenous

growth pioneered by ?) and ?) and allow the productivity of each worker to depend

not only on the capital internal to the firm but also on externalities from the average

capital available to the other firms K(t − 1), and from the infrastructure put in place

by the government Kg(t − 1), i.e.

ε(t) = ε̄1/(1−α) Kg(t − 1)γ1 K(t − 1)1−γ1

L(t)
. (11)

2All lower-case variables—apart from the interest, tax and growth rates—are in per GDP form. All

stocks refer to end-of-period.
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This feature of the model drives long-run endogenous growth. The aggregate production

function now becomes:

Y (t) = ε̄(t) Kg(t − 1)1−γ2 Kg(t − 1)γ2 (12)

where γ2 = α + (1 − α) (1 − γ1). In per-GDP form, this is the equation is written as

n(t + 1) = ε̄ kg(t)1−γ2 k(t)γ2 − 1. (13)

Performing the profit maximization, and aggregating over all firms, we get:

0 =
α (1 + n(t + 1))

k(t)
+ ψ

(1 + n(t + 1))3 i(t + 1)3

k(t)3

− ψ
(n(t + 1) + δ) (1 + n(t + 1))2 i(t + 1)2

k(t)2

+ (1 − δ) q(t + 1) − (1 + r(t)) q(t)

(14)

where q is Tobin’s q. It is defined as

q(t) = 1 +
ψ

2

(
(1 + n(t)) i(t) − (δ + n(t)) k(t − 1)

k(t − 1)

)2

+
(1 + n(t)) i(t)

k(t − 1)
ψ

(1 + n(t)) i(t) − (δ + n(t)) k(t − 1)

k(t − 1)

. (15)

Note that this implies that investment, like consumption, is forward-looking. The

evolution of the capital stock is given by:

k(t) =
1 − δ

1 + n(t)
k(t − 1) + i(t) (16)

Government

Government debt—the second component of wealth in (8)—is issued by the government

to satisfy its budget identity:

d(t) =
1 + r(t − 1)

1 + n(t)
d(t − 1) + g(t) − t(t) (17)

Tax revenue t(t) is defined as

t(t) = τ(t)

[
1 − δ k(t − 1)

1 + n(t)

]
(18)

where τ(t) is the tax rate. The term in square brackets assures that capital stock

depreciation is tax-deductible. Government spending g(t) is split into consumption

spending gc(t) and government investment gi(t). Government investment generates the
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same kind of adjustment costs as private investment. Total government spending is

therefore given by:

g(t) = gc(t) + gi(t)

[
1 +

ψ

2

(
(1 + n(t)) gi(t) − (δ + n(t)) kg(t − 1)

kg(t − 1)

)2
]

(19)

Infrastructure is assumed to depreciate at the same rate as private capital. Therefore

the evolution of infrastructure is given by:

kg(t) =
1 − δ

1 + n(t)
kg(t − 1) + gi(t) (20)

We assume that the government is perfectly benevolent; however there is no rep-

resentative household in our overlapping generations model, but rather a spectrum of

young and old households and those yet to be born. Following a suggestion by ?)3 we

use aggregate consumption to represent households of different generations, to arrive at

a social welfare function ũ for the government with the form:

ũ(t) =

∞∑
t′=t

(
1 − m

1 + d

)t′

ṽ(t′) where

ṽ(t′) = ln c(t′) + η ln gc(t′) + (1 + η)
t′∑

t′′=t+1

ln(1 + n(t′′))

(21)

To derive the solvency constraint—as opposed to the identity (17)—for the government,

first consider the “growth-adjusted” real interest rate over [t − 1, t] as ρ(t) = (1 +

r(t − 1))/(1 + n(t)) − 1. Then solving (17) forward in time, we transform the budget

identity into a solvency constraint at time t, analogous to (4)

d(t − 1) =

∞∑
t′=0

t(t + t′) − g(t + t′)
(1 + ρ(t)) (1 + ρ(t + 1)) . . . (1 + ρ(t + t′))

(22)

provided that the transversality or “no-Ponzi” condition

lim
t′→∞

d(t + t′)
(1 + ρ(t)) (1 + ρ(t + 1)) . . . (1 + ρ(t + t′))

= 0 (23)

holds. In (22) and (23) we assume that eventually ρ(t) > 0. This is a feature of

the Yaari-Blanchard consumption/savings model and rules out dynamic inefficiency.

According to (22) a government in debt with d(t) > 0 must, sometime in the future,

3They showed that a general optimization problem that takes account of generational diversity

could be broken down into a problem of maximizing a function of aggregate consumption and a second

problem of distributing aggregate consumption between generations.
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run primary surpluses to be solvent. The transversality condition (23) does not require

a stable debt/GDP ratio but merely that, in the long run, it does not increase faster

than the growth-adjusted real interest rate ρ(t). However in a world with even very

small departures from perfectly functioning capital markets, the notion of unbounded

government debt/GDP ratios does not appeal. A stronger concept of solvency is that

debt/GDP ratios stabilize. We enforce this condition through a small penalty attached

to debt in the government’s loss function which reflects the costs of issuing debt or

acquiring assets if d is negative. We also include the cost of collecting taxes, therefore

replacing ṽ in the social welfare function (21) by ˜̃v:

˜̃v(t) = ṽ(t) − ηd (d(t))2 − ητ (τ(t))2 − η∆τ (∆τ(t))2 (24)

The third term in (24) with a small value for ηd is sufficient to ensure a stable debt/GDP

ratio, i.e. strong solvency. The final two terms penalize both large changes and large

levels in the tax rate. We think of the inclusion of these extra terms as imposing a

constraint on the liabilities or assets the government can acquire and on the extent of

taxation it can impose in any one period. All these terms cover features not modelled

explicitly.

The government’s optimization problem at time t is the maximization of (21), with ṽ

replaced by ˜̃v given by (24). Maximisation takes place with respect to the government’s

choice variables gc(t′), gi(t′), τ(t′), ∀ t′ ≥ t, subject to the model of the private sector

and the condition that commodity markets clear:

c(t) + i(t)

[
1 +

ψ

2

(
i(t) (1 + n(t)) − (δ + n(t)) k(t − 1)

k(t − 1)

)2
]

+ g(t) = 1 (25)

This equation completes the model.

Equilibria

There are two equilibrium concepts depending on whether the government can precom-

mit to a given trajectory for fiscal instruments over the future. If the government can

precommit it can exercise the greatest leverage over the private sector. An announced

path of instrument settings is credible and affects private sector behaviour immediately

in the desired way. For instance the announcement of low taxes in the future will

immediately raise savings, lower the real interest rate and increase private investment.
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The solution to the optimal policy with precommitment is found by standard op-

timal control techniques using Lagrangian multipliers. Although the private sector is

atomistic and therefore can not act strategically, the equilibrium concept corresponds

to an open-loop Stackelberg equilibrium for dynamic games between strategic players

described in chapter 7 of ?).

When a government cannot commit itself to a future policy, it must act each period

to maximize its welfare function, given that a similar optimization problem will be

carried out in the next period. Formally, the policymaker maximizes at time t a welfare

function ũ(t) such that:

ũ(t) = ˜̃v(t) + 	 ũ(t + 1) (26)

where ˜̃v(t) is the single-period felicity given in (24) and ũ(t) is evaluated on the assump-

tion that an identical optimization exercise is carried out from time t + 1 onwards. The

solution to this problem is found by dynamic programming and, unlike the precom-

mitment policy, leads to a time-consistent trajectory or rule for instruments4. This

equilibrium concept corresponds to a feedback Nash equilibrium for dynamic games,

see ?), chapter 6. It has the property of being Markov-perfect—that is the government

instruments and the private-sector forward-looking variables depend only on current

values of the state variables. Following this solution procedure, a rational (utility-

optimizing) government will never wish to deviate from the policies designed at the

beginning of the planning period.

III Calibration and Results

Calibration

The model is calibrated around a steady-growth state fitted to the economy of the

United States in 1990. The growth rate is the central variable of the model whose

deduction as an endogenous variable would be subject to multiple numerical solutions.

Therefore we first choose n = 2.5%. We also fix r = 5%. We chose the mortality

m = 2%, and overall population growth g = 1%, to take account of immigration.

We collect basic national accounting data from the US Department of Commerce’s

Economic Bulletin Board. For the capital stock, we have data available from ?) about

4See Appendix C of ?) for details.
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the net capital stock K = 12706.7 billion $US. This is the figure we choose for the

private capital stock, i.e. k ≈ 2.4. Taking i to stand for fixed investment and using the

observed figure for the capital stock k we calibrate the depreciation rate. We use our

assumption that the rate of depreciation of private and public capital are equal to deduce

the public infrastructure stock from the government expenditure on infrastructure. To

estimate that expenditure, we collect data from the IMF Government Finance Statistics

yearbook. We assume that the categories 4, 5 and 12 are the expenditure contributing to

the capital stock of the government and aggregate federal state and local government

expenditure. We can then compute g, the proportion of investment expenditure, as

g ≈ 36%. Adding the federal, state and local debt and dividing by GDP gives d = 53.3%.

The exogenous parameters are summarized in the top two lines of Table 1. These

lines also state two additional pieces of heuristics that we use to calibrate the model.

First, we calibrate the government felicity parameter η on the ratio of public versus pri-

vate consumption. This would be the result of a static optimization exercise: maximize

ln C + η ln G subject to G+C being constant is G = ηC; i.e., in per-GDP form g = η c.

Notice that we are not assuming that dynamically optimal policies P or T are being

pursued in the central calibration about which we linearise the model. The reason for

this is that we need a linearised model in order to compute these regimes. However

we do carry out sensitivity analysis on η and other parameters. Second we calibrate

the relative productivity of the infrastructure to the ratio of infrastructure to the total

(i.e. public plus private) capital stock.5 The other lines in Table 1 illustrate how we

derive the remaining values from the steady-state relationships.

Finally we choose the parameters ητ , η∆τ , and ηd in (24). If we put ητ = η∆τ = 0

which implies no constraint on the size of the tax rate in any one period, but enforce

strong solvency by setting ηd equal to a small value (in fact we find that 0.1 is sufficient

for this purpose) we obtain optimal trajectories under precommitment for which the tax

rate in the first period is over 100%, although the tax rate falls sharply thereafter. This

5There has been much debate about this parameter. The empirical results of ?) and ?) suggest

that 1−γ2 is 39% and 34%, respectively. However we feel that these estimates should be upper bounds

for 1 − γ2 because other studies have found much lower value. In the extreme case, ?) suggest that

1− γ2 is not statistically significant from zero. We are however confident that our result carry over to

a wide variety of scenarios because we have conducted extensive sensitivity analysis (see Appendix A).
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n = 2.5% r = 5% m = 2% g = 1% i = 15% η = gc/c ≈ 18%

k = 241% g = 18% g = 36% d = 53.3% ε̄ = 73% γ2 = k/(kg + k) ≈ 75%

δ = (1 + n) i/k − n ≈ 6%

kg = g g (1 + n)/(n + δ) ≈ 79%

ε̄ = (1 + n) kg−γ2 kγ2−1 ≈ 73%

α = (r + δ) k/(1 + n) ≈ 26%

c = 1 − i − g ≈ 67%

gc = g (1 − g) ≈ 12%

τ = d (r − n) + (1 + n) g (1 + n − δ k) ≈ 22%

d = (1 + n) (d + k( m (1 + g) + c
[
r (1 − τ) (1 + g) (1 − m) + (1 − m)

(g − m) + (g + m) m (1 − n)
]
/ [c (1 + g) + (m + g) (k + d)] /(1 + n) ≈ 1.8%

Table 1: Calibration

oddity reflects a number of deficiencies in our model including the absence of other tax

distortions, the absence of explicit modelling of collection costs, political constraints

on high tax rates etc, as well as the shortcomings of a linear-quadratic approximation.

Fortunately quite small values of ητ and η∆τ remedy this feature of the simulation. We

choose ητ = η∆τ = 1. These are small values because in our quadratic approximation

the marginal rate of substitution between the consumption/GDP ratio c and τ along

the modified utility curve is −ητ τ ∗ c2/c∗ = .12 ητ for our calibration.

Results

Table 2 reports the long-run steady-state values of key variables for the precommitment

(P) and time-consistent (T) regimes as deviations about the original steady state. In

both regimes, debt becomes negative i.e., the government accumulates assets. Taxes

fall in the long run, but they fall by more than government spending and the income

that the assets accumulated generate make up for the difference. The most important

difference between the regimes is the size of the long-run growth rate. Both regimes

improve over the base line in terms of growth, but the growth rate in the T regime

is over .5% higher. The immediate reason for this can be seen by examining changes

in the per-GDP government and private capital stocks (kg and k) respectively. In
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precommitment time-cons. precommitment time-consistent

d∞ −71.451 −75.492 τ∞ −4.107 −9.269

n∞ 0.342 0.876 r∞ 0.005 0.301

c∞ 1.062 4.855 gc
∞ −2.129 −7.589

i∞ 0.493 0.741 gi
∞ 0.574 1.993

k∞ −2.942 −13.842 kg
∞ 4.009 16.576

ũ(∞) 7.257 14.202 ũ0 −217.6 −218.2

Table 2: Precommitment and Time-Consistent Policies. Variables are in per cent and

measured as deviations about the original steady-state. For example, nt = n(t)−n where

n(t) is actual and n is steady-state growth. ũ(∞) is the steady-state welfare evaluated

as in (28). ũ0 is the quadratic approximation of welfare at time 0, as calculated by the

simulation software. This number is not given as a per cent.

linear-deviation form (13) becomes

nt+1 =
n

kg + k
[kg

t + kt] (27)

using γ2 = kg/(k + kg) from the calibration in Table 1. Hence from (27) growth

increases if kg
t + kt increases, i.e., if government capital stock increases by more than

private capital stock decreases. This happens under both regimes, but more so under

T, which is why growth also increases by more. However it should be noted that the

low value for k—which is the private capital stock per GDP—is also a result of GDP

expanding faster in the T regime and this is confirmed by the higher investment in this

regime.

To complete the story we need to understand why capitals stocks change in this way.

However first we consider the long-run implications of policy for welfare. The welfare

of an individual who is born and lives in the steady state is equal to

ũ(∞) =
1 + d

m + d
[ln c + η ln gc +

(1 + η) (1 − m)

d + m
ln(1 + n)] (28)

From (28) the steady-state intertemporal welfare depends on utility from current

consumption, c + η gc, and growth n. From Table 3.2 with η = 0.18 both these compo-

nents of intertemporal welfare are higher in T relative to P in the long run for reasons

we discuss below; hence long-run steady-state welfare is also higher.
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Now we can evaluate the growth-rate equivalent of a steady-state regime change.

Suppose that it would be possible to jump from the initial steady state to the steady

state of the P and/or the T regime. By how much would the growth rate in the initial

equilibrium have to raise in order to reflect that change? If we use the results from

Table 2, we find that the long run of the optimal regime corresponds to an increase in

growth by .35%. That is important, but not spectacular. The change from the initial

steady state to the T regime steady state has a growth rate equivalent of .87%. The

change from the steady-state of the P regime that of the T regime therefore corresponds

to an increase in growth by .52%.

We have tested the properties that the long run of the T regime involves higher

growth and welfare than the P regime over a wide range of parameter settings. Results

are reported in Appendix A. Our sensitivity analysis suggests that our main findings

are remarkably robust with respect to the calibration of the model.

Now let us return to the question of why T and P regimes differ in the accumula-

tion of private and public capital. Figures 3.1 to 3.9 show the trajectories, for the key

variables, all reported in deviation form about their baseline values. The overall profile

of taxation and expenditure under the optimal (time-inconsistent) policy is as follows.

A large burst of taxation in the first periods is followed by a decline in the tax rate.

However we also see a later increase in taxation, such that the limiting steady-state tax

rate is still positive. The explanation for this profile is quite familiar. The installed

capital stock is predetermined at the beginning of the control period, i.e. the start of

control is not expected by the private sector. Therefore a tax on that stock mimics a

lump-sum tax. Using a heavy tax in the beginning therefore minimizes the welfare cost

of taxation.6 Thus for both P and T regimes government investment is financed by a

combination of a increase in the tax rate, τ and a reduction in government consumption,

gc. Both these changes are concentrated at the beginning of the planning period. By

implementing the tax increase in this way (in effect an initial tax surprise) its distor-

tionary impact on private investment is contained. Private consumption (c) falls in the

short run but increases in the long run. The fall in c and gc crowd-in the increase in

the public capital-GDP ratio kg which more than compensates for the reduction in k,

6Note that this result is not dependent on the finite-life aspects of the model. All that matters is

that taxation is distortionary.
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brought about by an interest rate rise, so that growth increases.

All these changes take place in both P and T regimes when implemented starting at

the baseline; however the time-consistency constraint means that the changes are more

pronounced under T; c and gc fall and taxation rises by more in the short-run under T

and rise by more in the long-run, crowding-in a bigger increase in public capital stock

and allowing for a much lower tax rate. Policy is of the general form of a sacrifice in

the short run and reaping the benefit of higher growth and output level in the long run.

Imposing time-consistency by optimizing first at the end of the planning period and

working towards the beginning improves the welfare at the end in the T regime relative

to P. Thus we end up with more initial sacrifice, but more long-run benefit in T.

Another way of viewing the time-consistency constraint is that it provides an incen-

tive to continue to raise taxes until no more taxes are needed to finance expenditure.

?) is an early contribution that established this result in a far simpler model without

endogenous growth. Our study shows that the essence of ?’s results carries over to a

much more developed model incorporating endogenous growth. If we believe that the

accumulation of debt is an important feature of observed economic policy, considering

time-consistent policies does not bring the predictions of the model closer to the em-

pirical facts; in fact it drives them away since asset accumulation of the government is

larger.

The new element that we add to the picture is the decision between government

consumption and investment expenditure. A näıve view would be to blame time con-

sistency for insufficient investment. Our numerical experiments suggest that this is

not correct and that in fact the time-consistent policy overaccumulates public capi-

tal. Loosely speaking we are adding a second layer of overinvestment into the dynamic

behaviour. It is already known that for any given path of government expenditure,

the time-consistent policy overaccumulates financial assets (with respect to the optimal

policy). When we introduce the additional degree of freedom to allow the government

either to consume or invest, we find overinvestment in physical assets.

If we believe that “out there in the real world” governments in fact underinvest, we

can not take comfort from the time-consistent solution when searching for a theoretical

underpinning for this view, unless we allow the government to discount much more

heavily than the private sector. To fix ideas, let the government discount at a factor
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that is ξ ≤ 1 times the discount factor of the private sector. Simulations show that as we

decrease ξ, i.e., we make the government more and more impatient, the long-run asset

accumulation in both regimes declines, but the asset position the time-consistent regime

is more sensitive to the decline in ξ. Thus ξ = .6—a quite severe distortion—implies

a long-run debt/GDP ratio of is −3% for the time-consistent regime, but −2% for the

optimal regime. Note that the difference between growth rates is also affected. The

optimal long run growth rate is .9% over the baseline, but the long-run time-consistent

growth rate is .7% over the baseline. This suggests that the better long-run welfare

improvement is valid when the government does not discount much more heavily than

the private sector, but the stylized fact of government accumulation of debt can be

captured by allowing the government to discount more heavily than the private sector.

IV Conclusion

Our main result is that precommitment can actually lead to lower long-run growth

and welfare and the time-consistent solution is associated with an overaccumulation

of assets by the government, unless the latter discounts more heavily than the private

sector. Ex ante precommitment must yield higher intertemporal welfare and problems

regarding implementation of optimal but time-inconsistent policies have focused on the

establishment of some commitment mechanism that would make them credible. Our

results suggest that the failure to find such a mechanism will actually be beneficial

to future generations and can obviate the problems of short-termism associated with

democratic decision-making.

We have provided intuition for our results in the context of a specific model. How-

ever if we step back from the discussion of the model, we can find some compelling

reasons for why this result may be quite general. Imagine first an ex-ante optimal,

time-inconsistent policy that involves “indulgence” initially, and “sacrifice” in the fu-

ture. What would does the time-consistent policy look like? It is useful to consider a

hypothetical “cheating” policy in which the time-inconsistent future policy trajectories

are announced and believed by private sector, but the government then engages in re-

optimization given these expectations. Then the tendency to indulge would continue

during all earlier periods. But of course since past indulgence has eroded the possibility
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to indulge in the current period; as we move to the future, we indulge less in every

period, because current indulgence reduces the possibility for future indulgence. In

the long run we run down our opportunities to indulge to zero. Clearly the long-run

welfare in such a cheating policy will be poor. In the time-consistent equilibrium the

private sector anticipates the possibility of re-optimization so no cheating can occur.

To achieve time-consistency and eliminate the incentive to cheat, the government must

then offer more indulgence in the early period and more sacrifice later. Thus the rever-

sal from indulgence to sacrifice will be more for the time-consistent policy than in the

time-inconsistent case. The intertemporal welfare for the latter will be (by construc-

tion) better at the beginning of the planning period and it will also be superior to the

time-consistent solution in the long-run.

But now assume that the opposite is true, that the optimal policy consists in making

a sacrifice in the early periods and allow for indulgence in the later periods. Again, time-

inconsistency in the form of an incentive to cheat and make more sacrifice in the early

stage exists along this policy path. In the time-consistent solution there will be more

sacrifice in the early periods, but in later periods, the sacrifice will bring fruit and allow

for higher consumption possibilities. In contrast to be previous case, now the time-

consistent policy brings higher welfare than the time-inconsistent policy in the long

run.

Are most economic optimisation solution leading to trajectories of the “indulge

then sacrifice” type or the “sacrifice then indulge” type? We not aware of any broad

study of this question, but it seems to us that the latter type is much more prominent

than the former. The latter situation arises for instance in models such as that is this

paper, where there is capital accumulation problem and initial capital falls short of an

overaccumulation level. It is also typically true in many models where the government

can issue debt or accumulate assets and where initial government assets are smaller

than the present value of government expenditure. Our conclusion should therefore

hold in wide variety of models.
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A Sensitivity analysis

In this appendix, we present a sensitivity analysis for the model. We change values for

the fundamental parameters of the model and recompute the steady state that results

from the optimal and time consistent policies. Note that we present the value that

the variables take rather than the deviation from the steady state. This value will be

different from the value in the original exercise because there is a different steady state

and because there is a different policy that is associated with that steady state. There

just reporting differences would have been misleading.

In the first column, we present the value of the fundamental variable that has

changed. From the 3rd to the 13th column we give the value of the steady state of

the variable indicated in the top row. For any shift in a fundamental parameter we re-

port the steady state of the variable in the optimal regime ‘P’ and in the time-consistent

regime ‘T’.

All our results carry through these simulations.

r n k kg d τ c i gi gc u

γ2 = P 5.17 2.97 233 83.6 −17.9 18.8 67.7 15.4 7.23 9.66 11.16

.60240 T 5.84 3.81 212 95.9 −22 13.7 71.6 15.4 8.84 4.18 27.06

γ2 = P 4.89 2.76 241 80.2 −17.8 18.4 67.9 15.6 6.8 9.69 5.14

.90360 T 4.92 3.09 238 93.2 −21.7 13.1 71.8 16.0 8.10 4.12 5.47

i = P 4.95 2.83 237 83.6 −20.0 18.1 71.3 12.4 7.13 9.22 11.05

.11984 T 5.07 3.04 232 90 −16.5 16.1 73.0 12.4 7.8 6.81 14.50

i = P 5.05 2.87 238 82.6 −16.9 18.8 65.7 17.5 7.06 9.78 5.03

.16852 T 5.61 3.76 222 101 −27 11.1 71.1 18.1 9.27 1.58 7.99

r = P 4.07 2.78 238 82.7 −16.5 19.3 67.7 15.4 7.01 9.98 22.23

.04000 T 4.41 3.38 227 95.7 −21.2 12.2 73 15.7 8.52 2.78 29.13

r = P 5.93 2.91 238 83.3 −19.2 18.2 67.7 15.6 7.15 9.51 −3.56

.06000 T 6.18 3.38 227 95.2 −22.2 14.3 70.6 15.8 8.48 5.2 2.20

δ = P 5.04 2.82 239 93.1 −15.8 19 67.2 15.5 7.02 10.3 6.68

.0500 T 5.59 3.74 222 116 −28.0 10.7 73 16.3 9.41 1.33 6.88

δ = P 4.97 2.88 237 75.1 −20.4 18.2 68.6 15.5 7.16 8.81 8.04

.0700 T 5.15 3.18 230 82.3 −18.3 15.4 70.8 15.4 8.02 5.74 12.77
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m = P 5.02 2.86 238 83.4 −14.8 17.9 68.5 15.5 7.13 8.87 15.63

.01600 T 5.29 3.39 227 95.4 −24.3 12.6 72.3 15.8 8.5 3.49 21.72

m = P 4.98 2.83 239 82.3 −21.9 19.3 67.1 15.5 7.01 10.3 0.22

.02400 T 5.30 3.38 227 95.5 −19.9 14.3 71 15.7 8.5 4.78 7.47

σ = P 4.98 2.93 238 66.6 −18.2 16.6 69.3 15.7 5.74 9.32 11.52

.28616 T 5.24 3.54 227 76.8 −22.5 9.78 74.3 16.1 6.93 2.69 14.99

σ = P 5.03 2.76 238 99.1 −17.5 20.4 66.5 15.3 8.49 9.7 3.01

.42924 T 5.35 3.23 227 114 −21.4 16.8 69.2 15.4 10.1 5.30 10.44

d = P 5.02 2.81 238 82.9 −17.8 18.9 67.7 15.4 7.05 9.85 4.17

.42800 T 5.32 3.34 227 95.5 −21.5 13.9 71.5 15.7 8.47 4.41 11.16

d = P 4.99 2.88 238 83 −17.9 18.4 67.9 15.6 7.10 9.47 8.08

.64200 T 5.28 3.41 227 95.5 −22.3 13.2 71.7 15.8 8.52 3.98 14.48

n = P 5.02 2.3 238 87.4 −18.3 20.4 66.4 15.4 7.03 11.1 −15.76

.02000 T 5.38 2.98 225 103 −22.0 13.5 71.4 15.9 8.79 3.96 −8.18

n = P 4.99 3.43 238 79.1 −17.0 16.3 69.7 15.6 7.16 7.49 36.08

.03000 T 5.26 3.82 229 88.9 −22.3 13.4 71.9 15.7 8.26 4.21 42.02

g = P 5.01 2.85 238 83.2 −16.3 18.3 68.1 15.5 7.10 9.29 9.80

.00800 T 5.3 3.38 227 95.5 −22.9 13.1 71.9 15.8 8.49 3.87 16.16

g = P 5 2.83 238 82.6 −19.6 19 67.5 15.5 7.04 10.0 2.69

.01200 T 5.30 3.38 227 95.5 −21.0 13.9 71.3 15.7 8.5 4.49 9.62

k = P 5.06 2.82 209 82.3 −15.8 19.4 67.1 15.4 7.01 10.5 4.72

2.11 T 5.72 3.81 193 103 −27.6 11.4 72.8 16 9.46 1.73 10.24

k = P 4.95 2.87 267 83.4 −19.4 17.9 68.6 15.6 7.14 8.68 7.53

2.71 T 5.12 3.19 259 91.7 −19.1 14.8 70.9 15.7 8.05 5.38 11.88

η = P 5.03 2.79 238 82.9 −18.1 20.1 66.7 15.4 7.03 10.9 3.14

.196 T 5.34 3.30 227 95.5 −22.2 15.4 70.1 15.6 8.44 5.86 11.83

η = P 4.97 2.91 238 83 −17.5 17 69.0 15.7 7.13 8.19 11.73

.156 T 5.25 3.47 227 95.5 −21.6 11.2 73.3 16 8.56 2.17 13.58
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Figure 1: Government Consumption Figure 2: Government Investment
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Figure 3: Debt Figure 4: Tax rate
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Figure 5: Consumption Figure 6: Investment
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Figure 7: Capital Figure 8: Infrastructure
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Figure 9: Growth rate Figure 10: Interest rate
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