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1 The problem

Our problem is to define a measure of information. To simplify, we start with a simple case.
Let there be a random variablé that can take a finite set of valug, z-, ..., z,,. Each of the outcomes has probabilities
p1,P2,. .., Ty We assume that; > 0 Vi Of course we have

M
> pi=1
i=1

Example: X is the result of throwing a dice; = 1, 2, = 2, ...2z¢ = 6 andp; = 1/6.
Problem: How much information have we gained when we know the value of X.

2 Strategy to resolve the problem

To solve our problem, we will assume that we have a function that expresses the information that we gain from Ehowing

We then look for reasonable properties that this function would have. Then we go out and ask a mathematician to point out
useful functions that have this properties.

Let h(p;) be the information gained from knowing that the valueXofs x;. Let H(X) be the average value of uncertainty
removed by knowing that the value &f, i.e.

M
H(X) = Z Di h(pz)

Let us first consider the very simple case where all events are equally probable. In that case

X1 /1
H(X) = —h|—|=f(M
x)=3 5t (57) = f0n)
In that simple caséf(X) is only a functionf(M) of M. If M is 2, we talk about what outcome we have when throwing a
coin. If M is 10® we talk about picking a person at random in NYC. One idea is that the more outcomes that there are to
choose form, the more information is gained by knowing the outcome. This is the first requirement.

Requirement H (X) = f(M) should be an increasing function bf.

Next consider the case where we run two independent experitiesmslY”. X that can take a finite set of value, x5, . .., x/,
each with probabilityl /M. Y that can take a finite set of valge, y», . . ., yr, €ach with probabilityl /L. The joint experi-
ment hasV/ L possible outcomes. Since we assume that both experiments are independent, knowing whathee uaken

will not tell us anything about the value &f. That is, when we remove from the average uncertainty of the joint experiment,
H(L M) the value of the information gained by knowingwhich isH (X) = f(M), we should still have the information of

Y, thatisH (Y) = f(L). Therefore

f(ML)—f(M) = f(L)
or in other words

Requirement For two independent experiments that geand L equiprobable outcomes,

f(ML) = f(M)+ f(L)

Next, let us consider that the result of the experiment is revealed gradually and relax the assumption that all outcomes have
the same probability. Assume that we group the possible outcomes into two groups. Group A has the,events. , x,.



and group B has the events, 1, 42, ..., 2. The probability of choosing an element in group Ais

p(A) = Z b
i=1

and the probability of picking an element in group B is

M
p(B) = Z bi

i=r+1

Imagine to pick event is chosen, but the information about the chosen element in revealed in two stages. Before the experiment
is chosen, the information to be gained by knowing the resulf (g, , p2, . .., par). If we discover the group that is being
selected, we gain the amount of informatifiliip(a), p(b)). If group A was chosen, the remaining uncertainty is

p(A) p(A)" 7 p(A)
H( b1 P2 br )

If group B was chosen, the remaining uncertainty is

Pr+1 Pr+42 PMm
" (p<A> (A p<A>)

Thus, on average, the remaining information that will be revealed when the full outcome is announced, after the announcement

of the group, will be
P1 P2 Dr Pr4+1 Pr42 Pm
H , e, +pp H , e,
pa <p<A> p(4) p<A>> e (p<A> p(A) p<A>)

Requirement 3Ve require that the full information gained from the revelation of the result, is the information about which
group has been chosen, plus the average information to be gained after the group was chosen.

P1 P2 Pr Pr+1 DPr+2 Pm
th"'aplﬂ :Hpa7pb +pAH< ) Yooy )+pBH< ) PR )
( ) = Hipla)p(b) p(A) p(A)" " p(A) p(A) p(A)" " p(A)
Finally, we will make a technical “sanity” requirement.
Requirement 4 (p, 1 — p) should be a continuous function.
There are the requirements. We can now ask mathematicians which functions out there satisfy these requirements.

3 Theorem and interpretation

TheoremThe only functions satisfying the requirements 1-4 are or the form

M

H(py,....pm) = =C Y pi log(p;)
i=1

whereC is a positive number and the log is taken to a basis that is larger then one. Remember the definition of the logarithm:
if a® = ¢, thenb = log,(c).

We omit the proof of that theorem.

If we chose the base of the logarithm as 2 and(set 1, we get a special measure of information called the entropy. It is
measured in “binary digits” or short, in bits. The resulting quantity is called the entropy.

Let us construct a little table with values of the logarithm to the bases 2

p P loga(p)
3/4 2—415 | 415
1/2 271 ~1
3/8 271415 | 1415
1/4 272 -2

1/8 273 -3
/16 | 274 —4
1/64 | 276 —6
1/256 | 278 -8



Assume | toss a coin once. What is the information gained?

1 1 1 1

Now suppose that the coin is a fake, it shows head with the probabijlitand tail with the probabilityl /4, in that case

1 (1\ 3 (3
H=—log (=)~ 2log (2) = 811
o0 (1) =3 (3) =

As the probability for head increases and the probability of tail falls, we are more and more certain that head will fall. At
the limit, the probability of head becomes 1 and the probability of tail becomes 0, and nothing is learned out of knowing the
result.

H = —log2(1) — 0log2(0) =0

Another interpretation goes as follows. Suppose that | have a random vakiathlat will take the values, 2, 3,4, 5 with
probabilities0.3,0.2,0.2,0.15, 0.15, respectively. Imagine a quiz, where the quiz master knows the answer and only answers
“yes” or “no”.

1st question: “Isit 1 or 2?”

if we get “yes” to first question, second question will be “Is it 1?” and from the answer we will know the result.

if we get “no” from the first question, the we ask

2nd question: “Is it 3?”

if we get “yes” to second question, we have the result. if we get “no” we have to ask a third question.

The average number of questions is

(0.340.2+0.2)2 + (0.15 4 0.15) 3 = 2.3

The entropy ofX is 2.27. This is a general result, the number of questions remains above the entropy but it can be quite close.



