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Abstract

A unified toolbox for testing, monitoring, and dating structural changes is provided for
likelihood-based regression models. In particular, least-squares methods for dating break-
points are extended to maximum likelihood estimation. The usefulness of all techniques
is illustrated by assessing the stability of de facto exchange rate regimes. The toolbox is
used for investigating the Chinese exchange rate regime after China gave up on a fixed
exchange rate to the US dollar in 2005 and tracking the evolution of the Indian exchange
rate regime since 1993.
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1. Introduction

Techniques for assessing and modeling structural change have been of prime interest in theo-
retical and applied econometric research in the last two decades. Especially for least-squares
regression a rich toolbox of methods has been established, encompassing tools for assessing
model stability in the sample period used for estimation, or in future incoming observations,
and for estimating breakpoints between sub-samples with different sets of parameters. These
methods are also known as testing for structural change (see e.g., Andrews 1993; Hansen
2001; Zeileis 2005), monitoring structural change (see e.g., Chu, Stinchcombe, and White
1996; Zeileis, Leisch, Kleiber, and Hornik 2005), and dating structural changes (see e.g., Bai
1997; Bai and Perron 2003). While a unified suite of methods is well-established for least-
squares regression, the corresponding techniques for likelihood-based regression models are
somewhat scattered in the literature. Here, we provide a unifying view that illustrates how
a functional central limit theorem for a likelihood-based model can be employed for testing,
monitoring, and dating in this model. Specifically, this extends the dating algorithm for
least-squares regression (Bai and Perron 2003) to maximum likelihood (ML) models.

All these techniques are applied to a problem which is of interest in the international economics
literature: classification of exchange rate regimes. Analysis of exchange rate regimes received
increasing interest during the last decade when it became clear that the de jure exchange
rate regime in a country, as announced by the central bank, often differs from the de facto
regime in operation (see e.g., Reinhart and Rogoff 2004; Levy-Yeyati and Sturzenegger 2003;
Bubula and Ötker-Robe 2002). The methods for identifying the exchange rate regime in the
literature have often lacked inferential foundations. Here, we provide a formal approach to
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analyzing this problem using the previously established unified structural change techniques.
This involves a linear regression, but as the error variance is of crucial interest, it is incorpo-
rated as a full model parameter by adopting an (approximately) normal model estimated by
(quasi-)maximum likelihood. We show applications for two currencies, the Chinese yuan CNY
and the Indian rupee INR.

2. A unified structural change toolbox

In this section, we first outline the model frame for regression models estimated by ML
along with the usual central limit theorem (CLT). For structural change methods, this CLT
needs to be extended to a functional CLT (FCLT) based on which testing procedures (in
historical samples), monitoring procedures (sequential tests for incoming data), and confidence
intervals for breakpoints can be established. This yields a unified structural change toolbox
for ML models and also provides some insights for applicability to models with other objective
functions and estimating functions, respectively.

2.1. Model

We assume n observations of some dependent variable yi and a regressor vector xi, such that
the yi are following some distribution F with k-dimensional parameter θi, conditional on the
regressors xi.

yi |xi ∼ F (θi) (i = 1, . . . , n). (1)

The ordering of the observations usually corresponds to time. Then, the hypothesis of interest
is “parameter stability”, i.e.,

H0 : θi = θ0 (i = 1, . . . , n) (2)

that should be tested against the alternative that the parameter θi changes over time.
If the parameters θ in such a model are stable, they are typically estimated by minimizing a
suitable objective function Ψ(yi, xi, θ) or, equivalently, solving the corresponding first-order
conditions based on the corresponding derivative ψ(yi, xi, θ) = ∂Ψ(yi, xi, θ)/∂θ:

argmin
θ∈Θ

n∑
i=1

Ψ(yi, xi, θ) = θ̂, (3)

n∑
i=1

ψ(yi, xi, θ̂) = 0. (4)

To obtain the ML estimator, the objective function is the negative log-likelihood (NLL)
ΨNLL(yi, xi, θ) = − log f(yi |xi, θ) corresponding to the distribution F . We adopt this ob-
jective function throughout the paper but note that many of the methods discussed below
can be applied straightforwardly to other M-type estimators such as ordinary least squares
(OLS), nonlinear least squares (NLS), or quasi-ML. However, it is crucial that the estimat-
ing function ψ is correctly specified while misspecification of the full likelihood can often be
remedied.
Under standard regularity conditions, e.g., as given in White (1994, Theorem 6.10, p. 104) or
Cameron and Trivedi (2005, Chapter 5), a central limit theorem (CLT) holds:

√
n(θ̂ − θ0) d−→ N (0, A−1

0 B0A
−1
0 ), (5)
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i.e., θ̂ is asymptotically normal with mean θ0 and a sandwich-type covariance matrix with
components

A0 = plimn−1
n∑
i=1

E[−ψ′(yi, xi, θ0)], (6)

B0 = plimn−1
n∑
i=1

VAR[ψ(yi, xi, θ0)], (7)

where ψ′ is the derivative of ψ, again with respect to θ.

Under various sets of assumptions (see e.g., Andrews 1993), this CLT can be extended to
a functional CLT (FCLT): The empirical fluctuation process efp(·), defined as the decorre-
lated partial sum process of the empirical estimating functions, converges to a k-dimensional
Brownian bridge W 0(·) on the interval [0, 1] (see e.g., Zeileis 2005).

efp(t) = B̂−1/2 n−1/2

bntc∑
i=1

ψ(yi, xi, θ̂) (0 ≤ t ≤ 1) (8)

efp(·) d−→ W 0(·). (9)

The Brownian bridge can also be written as W 0(t) = W (t)− tW (1), where W (·) is a standard
k-dimensional Brownian motion. Furthermore, B̂ is some suitable estimator of B0, e.g., the
outer product of the empirical estimating functions or some HC (heteroskedsticity consistent)
or HAC (heteroskedasticity and autocorrelation consistent) estimator to allow for certain
deviations from the correct specification of the likelihood.

While the empirical fluctuation process efp(·) is governed by the FCLT under the null hypoth-
esis of parameter stability, its fluctuation should generally be increased under the alternative
of structural change. In particular, the process typically exhibits peaks at the times changes
in θi occur. Hence, efp(·) and the associated FCLT are the basis for the inference presented
in the remainder of this section.

2.2. Testing

The classical question in structural change analysis is whether the true model parameter θ is
really stable throughout the sample period i = 1, . . . , n. Thus, testing for structural change is
concerned with testing the null hypothesis H0 from Equation 2 against the alternative that θi
changes over time. Various patterns of change are conceivable, e.g., single or multiple breaks
or random walks etc.

Deviations from parameter stability can be brought out by assessing deviations of the em-
pirical estimating functions ψ(yi, xi, θ̂) from their zero mean. This is done by applying some
aggregation functional λ(·) to the empirical fluctuation process λ(efp), yielding a univariate
test statistic. The corresponding limiting distribution is the same functional (or its asymp-
totic counterpart) applied to a Brownian bridge λ(W 0) so that critical values and p values can
be derived. This approach encompasses a wide collection of structural change tests suggested
in the literature, see Zeileis (2005) for a detailed discussion.
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For brevity, we provide here just a few important special cases:

Sdmax = sup
t∈[0,1]

||efp(t)||∞, (10)

SCvM = n−1
n∑
i=1

||efp(i/n)||22 , (11)

SMOSUM = sup
t∈[0,1−h]

||efp(t+ h)− efp(t)||∞, (12)

Ssup LM = sup
t∈[π,1−π]

||efp(t)||22
t(1− t)

. (13)

The double maximum statistic Sdmax (i.e., the maximum over parameters and time) is par-
ticularly useful for exploratory purposes because it can easily be visualized along with critical
values (derived from the distribution of the maximum of a Brownian bridge) so that timing of
a structural change and the parameter affected by it can be identified graphically. However,
this test might have poor power in the presence of a random walk alternative or multiple
breaks. In such a situation, a Cramér-von Mises statistic SCvM as in the Nyblom-Hansen test
(Nyblom 1989; Hansen 1992) or a MOSUM statistic SMOSUM with bandwidth h would be
more suitable. The statistic Ssup LM (Andrews 1993) is the supremum of LM statistics on the
interval [π, 1 − π] (for some trimming parameter π) and is particularly well-suited for single
break alternatives.

2.3. Monitoring

Given that a stable model could be established for observations i = 1, . . . , n, it is natural to
ask whether this model remains stable for future incoming observations i > n. More formally,
monitoring (Chu et al. 1996) tests the null hypothesis

H0 : θi = θ0 (i > n), (14)

sequentially against changes in the so-called monitoring period i > n (or the scaled t > 1).

Based on the tools from the previous section, an extension to the monitoring situation is fairly
straightforward. The empirical fluctuation process efp(t) is simply continued in the monitoring
period by computing the empirical estimating functions for each new observation (using the
parameter estimates from the stable history period [0, 1]) and updating the cumulative sum
process. This is still governed by an FCLT on an extended interval [0, T ] with T > 1 (Zeileis
2005). Based on this FCLT, a testing procedure can be established that re-computes the
functional λ(efp(t)) for each new observation and rejects the null hypothesis from Equation 14
if it exceeds some critical value b(t) for any t > 1. As this is a sequential testing procedure,
not only a single critical value is required but a function b(t) that can be interpreted as a
boundary function for the empirical fluctuation process. To yield a level α testing procedure,
it needs to fulfill

1− α = P(λ(W 0(t)) ≤ b(t) | t ∈ [1, T ])

Various combinations of functionals λ and boundaries b are conceivable (Chu et al. 1996;
Horváth, Huškova, Kokoszka, and Steinebach 2004; Zeileis et al. 2005; Zeileis 2005) that can
direct power against changes occuring early or late in the monitoring period t > 1 or that try
to spread the power evenly.
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For the applications in Section 3 we adopt a maximum functional and a linear boundary
function b(t) = ±c · t as suggested in Zeileis et al. (2005) that spreads the power rather evenly.
More precisely, we detect a change and reject the null hypothesis if

||efp(t)||∞ > c · t for any t ∈ [1, T ]

where the critical value c can be obained from (Zeileis et al. 2005, Table III) and applying a
Bonferroni correction.

2.4. Dating

If there is evidence for parameter instability in the regression model, a natural question is
to ask when and how the parameters changed. Often, a reasonable approximation is to
adopt a segmented regression model, i.e., assume stable sets of parameters θ(j) exists for
j = 1, . . . ,m + 1 segments that are mutually exclusive and cover the sample period. More
formally, θ(j) holds for the observations i = ij−1 + 1, . . . , ij where {i1, . . . , im} are the m
breakpoints and, by convention, i0 = 0 und im+1 = n.
The goal of dating is to determine estimates of the the m breakpoints and the m+1 segment-
specific parameters θ(j), often followed by a subsequent model selection for the number of
breakpoints m. If the breakpoints were known, estimation of the parameters θ(j) would be
easy: they can be obtained by solving Equation 3 (or 4) in the j-th segment. The overall
segmented objective function based on Ψ is then given by

PSI (i1, . . . , im) =
m+1∑
j=1

psi(ij−1 + 1, ij),

psi(ij−1 + 1, ij) =
ij∑

i=ij−1+1

Ψ(yi, xi, θ̂(j)),

where psi(ij−1 + 1, ij) is the minimal value of the objective function for the model fitted on
the j-th segment with associated parameter estimate θ̂(j). Dating then tries to find the global
optimizers ı̂1, . . . , ı̂m of the segmented objective funtion, i.e., solving

(̂ı1, . . . , ı̂m) = argmin
(i1,...,im)

PSI (i1, . . . , im) (15)

subject to a minimal segment size constraint ij−ij−1 +1 ≥ nh ≥ k. The minimal segment size
is either chosen directly or derived from some trimming h as nh = bnhc. The optimal (with
respect to Ψ) set of breakpoints from Equation 15 is called m-partition Im,n = ı̂1, . . . , ı̂m.

Estimation

Direct optimization in Equation 15 by exhaustive search over all conceivable partitions is of
order O(nm) and hence computationally burdensome. Fortunately, the Bellman principle of
optimality can be applied to the problem as the following recursion holds:

PSI (Im,n) = min
mnh≤i≤n−nh

[PSI (Im−1,i) + psi(i+ 1, n)] . (16)

Therefore, a dynamic programming approach can be employed that solves the global mini-
mization in O(n2). Bai and Perron (2003) describe in detail such a dynamic programming
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algorithm for minimizing the segmented residual sum of squares (RSS) in linear regression
models. In fact, the same algorithm can be applied for computing the more general class
of estimators considered here because the objective function is additive in the observations
(Hawkins 2001). More precisely, for computing the ML estimators in some likelihood model
(instead of OLS estimators in the linear regression model) their objective function ΨRSS just
has to be replaced by the negative log-likelihood ΨNLL:

ΨRSS(θ) = (yi − x>i θ)2,

ΨNLL(θ) = − log f(yi |xi, θ).

Essentially, the algorithm first computes a triangular matrix with psi(i, j) for all j− i ≥ bnhc
and i = 1, . . . , n − bnhc + 1. Based on this matrix, the problem from Equation 15 can be
solved by exploiting Equation 16 for any number of breakpoints m (if (m+ 1)bnhc < n).

Model selection

Using this algorithm, the optimal (with respect to Ψ) segmentation can be computed if the
number of breakpoints m is known. In practice, however, m typically needs to be chosen
based on the observed data as well. One solution to this problem is to compute the optimal
segmentations for a sequence of breakpoints m = 0, 1, . . . (which can all be computed from the
same triangular matrix mentioned above) and to choose m by optimizing some information
criterion IC (m). If the segmentations are likelihood-based, such information criteria are
easily available. Thus, if PSI (Im,n) is based on ΨNLL we call it NLL(Im,n) and computation
of information criteria is straightforward:

IC (m) = 2 ·NLL(Im,n) + penalty · ((m+ 1)k +m) ,

with different penalties leading to different information criteria. Bai and Perron (2003) con-
sider two different criteria, the BIC and a modified BIC as suggested by Liu, Wu, and Zidek
(1997):

penaltyBIC = log(n),
penaltyLWZ = α · log(n)2+δ.

In our empirical studies below, we follow the recommendations of Bai and Perron (2003) and
Liu et al. (1997) and use the LWZ criterion in our empirical studies, setting the parameters
α = 0.299 and δ = 0.1 so that the LWZ penalty is higher than in the BIC for n > 20.

Confidence intervals

In addition to point estimation, confidence intervals for the true segement-specific parameters
θ

(j)
0 and the true breakpoints i0j are of interest. Hence, some further extensions of the results

of Bai and Perron (2003) are discussed here. As the breakpoint estimates ı̂j converge at the
faster rate n, the standard

√
n asymptotics from Equation 5 still hold for θ̂(j) with segment-

specific matrices A(j)
0 and B

(j)
0 (analogous to Equations 6 and 7), respectively. Both can be

estimated in the usual way, e.g., by computing a HC or HAC estimate from the observations
in segment j. If the likelihood can be assumed to be correctly specified, then A

(j)
0 = B

(j)
0

corresponds to the Fisher information and is usually estimated by the Hessian matrix.
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Confidence intervals for the true breakpoints i0j can also be derived if, following Bai and
Perron (2003), an asymptotic framework is adopted where the magnitudes of the changes
∆j = θ

(j+1)
0 − θ(j)

0 converges to zero as the sample size increases. Then the distribution of the
breakpoint estimates is given by

∆>j A
(j)
0 ∆j

∆>j B
(j)
0 ∆j

(̂ıj − i0j )
d−→ argmax

t
V (j)(t) (j = 1, . . . ,m) (17)

where V (j)(·) is a stochastic process defined by

V (j)(t) =

{
W

(j)
1 (−t)− |t|/2, if t ≤ 0√
ξj(φ

(j)
2 /φ

(j)
1 )W (j)

2 (t)− ξj |t|/2, if t > 0
.

W
(j)
1 and W

(j)
2 are independent Brownian motions and ξj = (∆>j A

(j+1)
0 ∆j)/(∆>j A

(j)
0 ∆j),

φ
(j)
1 = (∆>j B

(j)
0 ∆j)/(∆>j A

(j)
0 ∆j), and φ

(j)
2 = (∆>j B

(j+1)
0 ∆j)/(∆>j A

(j+1)
0 ∆j). A closed form

solution for the distribution function of argmaxt V (j)(t) is provided by Bai (1997, Appendix B).
Hence, all that is required in addition for computing confidence intervals are estimates ∆̂j =
θ̂(j+1) − θ̂(j), as well as Â(j), and B̂(j) which can be derived as above.

The arguments for deriving Equation 17 are completely analogous to Bai and Perron (2003,
Section 4) and Bai (1997, Section II.C) if the role of regressors/disturbances in the linear
regression model is replaced by the estimating functions in the likelihood model. Specifically,
the estimating functions in an OLS regression are given by ψ(yi, xi, θ) = xi(yi − x>i θ) = xiui
and the corresponding derivative is ψ′(yi, xi, θ) = xix

>
i . Consequently, the basic assumption

is that an FCLT as in Equation 9 has to hold for each segment j, corresponding to Bai (1997,
Assumption 9).

3. Application to exchange rate regime analysis

In the last decade, it has been revealed that the de jure exchange rate regime in a country,
as announced by the central bank, often differs from the de facto regime in operation. This
has motivated a small literature on data-driven methods for the classification of exchange
rate regimes (see e.g., Reinhart and Rogoff 2004; Levy-Yeyati and Sturzenegger 2003; Bubula
and Ötker-Robe 2002). Broadly speaking, exchange rate regimes range from floating, i.e., the
currency is allowed to fluctuate based on market forces, pegged, i.e., the currency has limited
flexibility when compared with a basket of currencies or a single currency, or fixed, i.e., the
currency has a fixed parity to another currency.

A valuable tool for understanding the de facto exchange rate regime in operation is a linear
regression model based on cross-currency exchange rates (with respect to a suitable numeraire)
popularized by Frankel and Wei (1994) and hence also called the Frankel-Wei model. To
understand the de facto exchange rate regime in a given country in a given time period,
researchers and practitioners can easily fit this regression model to a given data window, or
use rolling data windows. However, such a strategy lacks a formal inferential framework for
determining changes in the regimes. Hence, we provide such a framework by applying the
structural change methods presented above to answer the following questions: 1. Testing:
Is a given exchange rate model stable within the time period in which it was established?
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2. Monitoring: If it is stable, does it remain stable for future incoming observations? 3. Dating:
If it is not stable, when and how did the exchange rate regime change?
After briefly establishing the notation for this model, we illustrate the methods by investigat-
ing the exchange rate regimes of China and India.

3.1. Exchange rate regression

To determine whether a certain currency is pegged to (a basket of) other currencies, the
exchange rate regression (Frankel and Wei 1994) employs a standard linear regression model

yi = x>i β + ui (i = 1, . . . , n), (18)

in which the yi are returns of the target currency and the xi are vectors of returns for a basket
of c currencies plus a constant.
When a country runs a fixed exchange rate, one element of β is 1 and the remaining elements
are zero, and the error variance is σ2 = 0. When a country runs a pegged exchange rate
against one currency, one element of β is near 1, the remaining elements are near zero, and σ2

takes low values. With a basket peg, σ2 takes low values, and the coefficients β correspond
to weights of the basket. With a floating rate, σ2 is high, and the β values reflect the natural
current account and capital account linkages of the country.
For both yi and xi, we use log-difference returns (in percent) of different currencies as com-
puted by 100 · (log pi − log pi−1), where pi is the price of a currency at time i and given
in CHF (Swiss franc) as the numeraire currency. Hence, in the following, we use ISO 4217
abbreviations to denote currency returns computed from prices in CHF. For the numeraire,
other choices are conceivable (e.g., other currencies, special drawing rights, or gold); but for
pegged exchange rate regimes the results are typically not very sensitive to the choice of the
numeraire (Frankel and Wei 1994, 2007).
Assessing the stability of an exchange rate regression might seem trivial because it is a linear
regression model typically estimated by OLS for which application of all structural change
techniques is well-established practice. However, the error variance σ2 (capturing the flexibil-
ity of the exchange rate regime in operation) is of crucial interest here and has to be treated
as a full model parameter and not just a nuisance parameter as in most linear regressions and
associated structural change methods. Specifically, RSS-based structural change techniques
(such as Bai and Perron 2003) are insensitive to changes in σ2, if it is not included explicitly.
Therefore, we adopt a normal model, i.e., f(y|x, β, σ2) = φ((y− x>β)/σ)/σ where φ(·) is the
standard normal density function. This has the full combined parameter θ = (β>, σ2)> of
length k = c + 2 (c currency coefficients, intercept, and variance). This leads to the same
estimating functions (up to scaling) and estimates compared to OLS for the coefficients β but
adds another estimating function for the error variance:

ψβ(y, x, β, σ2) = x (y − x>β)/σ2, (19)
ψσ2(y, x, β, σ2) = ((y − x>β)2 − σ2)/(2σ4). (20)

The combined estimating functions ψ are employed for testing and monitoring exchange rate
regimes and ΨNLL is used for dating breaks between the regimes. Note that breaks (rather
than smooth transitions) are particularly likely to be a useful model here because changes in
the exchange rate regime typically stem from policy interventions of the corresponding central
banks.
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3.2. China

In recent years, there has been enormous global interest in the CNY exchange rate which was
fixed to the USD in the years leading up to mid-2005. In July 2005, China announced a small
appreciation of CNY, and, in addition, a reform of the exchange rate regime. The People’s
Bank of China (PBC) announced this reform to involve a shift away from the fixed exchange
rate to a basket of currencies with greater flexibility (PBC 2005).

Despite the announcements of the PBC, little evidence could be found for China moving away
from a USD peg in the months after July 2005 (Shah, Zeileis, and Patnaik 2005). To begin our
investigation here, we follow up on our own analysis from autumn 2005: Using daily returns
from 2005-07-26 up to 2005-10-31 (corresponding to n = 68), we established a stable exchange
regression in Shah et al. (2005) that we monitored in the subsequent months, publishing
the monitoring progress weekly online at http://www.mayin.org/ajayshah/papers/CNY_
regime/. The currency basket employed consists of the most important floating currencies:
USD, JPY (Japanese yen), EUR (euro), and GBP (British pound). More currencies could be
included but we refrain to do so because including irrelevant currencies decreases power and
precision of the procedures and the most important conclusions can already be drawn with
this small basket, as we will see below.

In a first step, we fit the exchange regression to the 68 observations in the first three months
after the announcements of the PBC. The estimated exchange rate regime is

CNYi = −0.005 + 0.9997 USDi + 0.005 JPYi − 0.014 EURi − 0.008 GBPi + ûi.

with only the USD coefficient differing significantly from 0 (but not significantly from 1), thus
signalling a very clear USD peg. The R2 of the regression is 99.8% due to the extremely low
standard deviation of σ = 0.028.

The fluctuation in the parameters during this history period is very small, see the correspond-
ing efp(t) for 0 ≤ t ≤ 1 in Figure 1 on the left of the vertical dashed line (marking the end of
the history period). Also none of the parameter instability tests from Section 2.2 would reject
the null hypothesis of stability, e.g., the double maximum statistic is Sdmax = 1.097 with a
p value of p = 0.697.

The same fluctuation process efp(t) is continued subsequently as described in Section 2.3
in the monitoring period starting from 2005-11-01 as shown in Figure 1 on the right of the
vertical dashed line. The boundary shown is b(t) = ±2.475 · t, derived at 5% significance
level (for monitoring up to T = 4). In the first months, up to spring 2006, there is still
moderate fluctuation in all processes signalling no departure from the previously established
USD peg. In fact, the only larger deviation during that time period is surprisingly a decrease
in the variance—corresponding to a somewhat tighter USD peg—which almost leads to a
boundary crossing in January 2006. However, the situation relaxes a bit before in March
2006 the variance component of the fluctuation process starts to deviate clearly from its zero
mean. This corresponds to an increase in the variance and leads to a boundary crossing in
2006-03-27. The fluctuation in all other coefficients remains non-significant which conveys
that a USD peg is still in operation, only with a somewhat larger variance.

To capture the changes in China’s exchange rate regime more formally, we fit a segmented
exchange rate regression by dating regime changes as described in Section 2.4. Using daily
returns from 2005-07-26 through to 2007-12-31, we determine the optimal breakpoints for
m = 1, . . . , 10 breaks with a minimal segment size of nh = 20 observations and compute

http://www.mayin.org/ajayshah/papers/CNY_regime/
http://www.mayin.org/ajayshah/papers/CNY_regime/
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Figure 1: Monitoring fluctuation process for CNY exchange rate regime.

the associated segmented NLL and LWZ criterion. Of course, NLL decreases with every
additional break but with a marked decrease only for going from m = 0 to 1 break. This is
also reflected in the LWZ criterion that assumes its minimum for m = 1 so that we choose a
1-break (or 2-segment) model. The estimated breakpoint is 2006-03-14, i.e., shortly before the
boundary crossing in the monitoring procedure (which occurs somewhat later due to the time
the process needs to deviate from zero to the boundary). The associated parameter estimates
are provided in Table 1 along with standard errors. The 90% confidence interval for the break
date estimate is [2006-02-17, 2006-03-15], which is rather non-symmetric. Roughly speaking,
this means that the end of the low-variance regime can be determined more precisely than
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Figure 2: Negative log-likelihood (dotted, left axis) and LWZ information criterion (solid,
right axis) for CNY exchange rate regimes.

the start of the high-variance regime.

These results allow for several conclusions about the Chinese exchange rate regime after spring
2006: CNY is still pegged to USD. The exchange rate regime got more flexible, going from
σ = 0.028 to 0.096. While the change is statistically significant, this is still very low (see
results below for India). The intercept is clearly smaller than 0, reflecting a slow appreciation
of the CNY. In summary, there is a modest easing of the rigid USD peg in spring 2006. To
assess whether the CNY regime makes further steps away from tight pegging to USD, a new
monitoring process could be set up using the data after 2006-03-14 as the history period (or
potentially bounding the start somewhat away from the break).

period β0 βUSD βJPY βEUR βGBP σ
2005-07-26 – 2006-03-14 -0.005 0.999 0.005 -0.015 0.007 0.028

(0.002) (0.005) (0.005) (0.017) (0.008)
2006-03-15 – 2007-12-31 -0.020 0.977 -0.015 0.030 -0.009 0.096

(0.005) (0.013) (0.011) (0.029) (0.016)

Table 1: Segmented CNY exchange rate regimes: Coefficient estimates (and standard errors)
with significant coefficients (at 5% level) printed in bold face.
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3.3. India

Another expanding economy with a currency that has been receiving increased interest over
the last years is India. As with China, India is in the process of evolving away from a closed
economy towards a greater integration with the world on both the current account and the
capital account. This has brought considerable stress upon the pegged exchange rate regime.

Therefore, we try to track the evolution of the INR exchange rate regime since trading in the
INR began. Using weekly returns from 1993-04-09 through to 2008-01-04 (yielding n = 770
observations), we first fit a single exchange regime that is subsequently segmented. Weekly
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Figure 3: Historical fluctuation process for INR exchange rate regime.
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Figure 4: Negative log-likelihood (dotted, left axis) and LWZ information criterion (solid,
right axis) for INR exchange rate regimes.

rather than daily returns are employed to reduce the noise in the data and alleviate the
computational burden of the dating algorithm of order O(n2). The currency basket employed
is essentially the same as above using the most important floating currencies.1

Using the full sample, we establish a single exchange rate regression only to show that there is
not a single stable regime and to gain some exploratory insights from the associated fluctuation
process. As we do not expect to be able to draw valid conclusions from the coefficients of a
single regression, we do not report the coefficients here and rather move on to a visualization of
efp(t) and the associated double maximum test in Figure 3. Because two processes (intercept
and variance) exceed their 5% level boundaries, there is evidence for at least one structural
change. More formally, the test statistic is Sdmax = 1.724 with a p value of p = 0.031. This
p value is not very small because there seem to be several changes in various parameters.
A more suitable test in such a situation would be the Nyblom-Hansen test with SCvM =
3.115 and p < 0.005. Nevertheless, the multivariate fluctuation process is interesting as a
visualization of the changes in the different parameters. The process for the variance σ2 has
the most distinctive shape revealing at least four different regimes: at first, a variance that is
lower than the overall average (and hence a decreasing process), then a much larger variance
(up to the boundary crossing), a much smaller variance again and finally a period where the

1The only difference to the previous section is that EUR can only be used for the time after its introduction
as official euro-zone currency in 1999. For the time before, exchange rates of the German mark (DEM, the
most important currency in the EUR zone) adjusted to EUR rates, are employed. The combined returns are
denoted DUR below.
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period β0 βUSD βJPY βDUR βGBP σ
1993-04-09 – 1995-03-03 -0.006 0.972 0.023 0.011 0.020 0.157

(0.017) (0.018) (0.014) (0.032) (0.024)
1995-03-10 – 1998-08-21 0.161 0.943 0.067 -0.026 0.042 0.924

(0.071) (0.074) (0.048) (0.155) (0.080)
1998-08-28 – 2004-03-19 0.019 0.993 0.010 0.098 -0.003 0.275

(0.016) (0.016) (0.010) (0.034) (0.021)
2004-03-26 – 2008-01-04 -0.058 0.746 0.126 0.435 0.121 0.579

(0.042) (0.045) (0.042) (0.116) (0.056)

Table 2: Segmented INR exchange rate regimes: Coefficient estimates (and standard errors)
with significant coefficients (at 5% level) printed in bold face.

variance is roughly the full-sample average. Other interesting processes are the intercept and
maybe the USD and DUR. The latter two are not significant but have some peaks revealing
a decrease and increase, respectively, in the corresponding coefficients.

To capture this exploratory assessment in a formal way, a dating procedure is conducted for
m = 1, . . . , 10 breaks and a minimal segment size of nh = 20 observations. The resulting
values for the NLL and associated LWZ information criterion are depicted in Figure 4. NLL
is decreasing quickly up to m = 3 breaks with a kink in the slope afterwards. Similarly,
LWZ takes its minimum for m = 3 breaks, choosing a 4-segment model. The corresponding
parameter estimates (and standard errors) are reported in Table 2.

The most striking observation from the segmented coefficients is that INR was closely pegged
to USD up to March 2004 when it shifted to a basket peg in which USD has still the highest
weight but considerably less than before. Furthermore, the changes in σ are remarkable,
roughly matching the exploratory observations from the empirical fluctuation process. A
more detailed look at the results in Table 2 shows that the first period is a clear and tight
USD peg. During that time, pressure to appreciate was blocked by purchases of USD by the
central bank. The second period, including the time of the East Asian crisis, saw a highly
increased flexibility of the INR. The third period exposes much tighter pegging again with low
volatility, some appreciation and some small (but significant) weight on DUR. In the fourth
period after March 2004, India moved away from the tight USD peg to a basket peg involving
several currencies with greater flexibility (but smaller than in the second period). In this
period, reserves in excess of 20% of GDP were held by the Reserve Bank of India (RBI), and
a modest pace of reserves accumulation has continued.

The confidence intervals for the three break dates at 90% level are [1994-11-11, 1995-03-10],
[1998-08-14, 1998-12-18], and [2003-11-28, 2004-04-02], respectively. These are again rather
non-symmetric with tight bounds corresponding to the low-variance regimes. (Recall that
weekly data is employed and thus a difference of seven days is the tightest bound possible.)

The existing literature classifies the INR is a de facto pegged exchange rate to the USD in
the period after April 1993 (Reinhart and Rogoff 2004). Table 2 shows the fine structure of
this pegged exchange rate; it supplies dates demarcating the four phases of the exchange rate
regime; and it finds that by the fourth period, there was a basket peg in operation. This
constitutes a statistically well-founded alternative to the existing classification schemes of the
Indian exchange rate regime.
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4. Summary

A unified structural change toolbox for testing, monitoring, and dating structural changes in
maximum likelihood regression models is discussed. All techniques are based on the (negative)
log-likelihood as the objective function or the corresponding estimating function (likelihood
scores), respectively. In particular, methods for estimating the breakpoints in such a model
are extended from the corresponding techniques for least-squares regression. To illustrate
their usefulness in practice, all procedures are applied to a regression model for estimating
exchange rate regimes. Specifically, changes in the regimes of two currencies are investigated:
CNY and INR. For the former, a 2-segment model is found for the time after July 2005 when
China gave up on a fixed exchange rate to the USD. While being still closely linked to USD
in both periods, there has been a small step in the direction of the claims of the Chinese
central bank: flexibility slightly increased. For the INR, a 4-segment model is found with
a close linkage of INR to USD in the first three periods (with tight/flexible/tight pegging,
respectively) before moving to a more flexible basket peg in spring 2004.

Computational details

The cross-currency returns are derived from exchange rates available online from the US Fed-
eral Reserve at http://www.federalreserve.gov/releases/h10/Hist/. All computations
are carried out in the R system for statistical computing (R Development Core Team 2008,
version 2.7.1) with packages fxregime 0.2-0 (Zeileis, Shah, and Patnaik 2008) and struccha-
nge 1.3-3 (Zeileis, Leisch, Hornik, and Kleiber 2002). Both, R itself and the packages, are
freely available at no cost under the terms of the GNU General Public Licence (GPL) from the
Comprehensive R Archive Network at http://CRAN.R-project.org/. Vignettes reproduc-
ing the analyses from this paper are available via vignette("CNY", package = "fxregime")
and vignette("INR", package = "fxregime") after installing the packages.
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