
Reading ReDIF �les: the rr.pm package

Thomas Krichel and Ivan Kurmanov

July 2000

1 Introduction

This document describes rr.pm, a Perl module to read ReDIF, version 1 data. It is is available on the web at
http://openlib.org/acmes/root/docu/rr_pm.html .
rr.pm is a Perl module. It reads ReDIF data and validates the structure of the contents against a ReDIF speci�-
cation contained in a separate speci�cation �le. It puts the valid templates into a hash structure where they can
be easily accessed for further processing.

2 Installing the software

The software is available at ftp://openlib.org/acmes/root/soft/ReDIF-perl/. Unpack the software, then read any
�le called README for the latest changes that may not be documented in this page yet.
The package contains

• the rr.pm perl module, an application interface to the ReDIF parser

• the ReDIF::init.pm perl module as a shared tool for ReDIF developers

• rech, a ReDIF checking script

• rere, a ReDIF reading (�ltering) script

• Make�le.PL, a well-known Perl installation utility

• Con�gure, a well-known con�guration utility

• documentation related to rr.pm, rech and redif.spec

There are two ways to install the programme, called �standard� and �stand-alone�, respectively. Before installing
the programme, you should choose a ReDIF home directory.

2.1 Choosing a ReDIF home

Iou will want to use this package if you have or are going to have your own ReDIF metadata archive. Alternatively,
you may �nd it useful if to produce or process, ReDIF data or write software that uses ReDIF data.
If you have a directory structure as set out by the Guildford protocol , then the ReDIF home is your ReDIF
archive directory. If you do not have such a directory structure, proceed as follows, to create a stand-alone
installation.
Choose or create a directory that will be the ReDIF home and copy the spec/, etc/ and doc/ directories of the
package. If you do not have super user rights to install the package with �make install� command into a generally
accessibly Perl library tree, then you also need to copy the lib/ directory and the rech and rere scripts. Create a
data/ directory as a subdirectory of the ReDIF home and store your ReDIF data �les in it. This method is known
as a �stand-alone� installation of ReDIF-perl. Don't forget to look at the $REDIFHOME /etc/rech.conf.eg �le
to con�gure the ReDIF checker rech.
Note that the package also contains a ReDIF speci�cation �le in the spec/ directory. However, please check with
the community that uses ReDIF if that speci�cation is current. In the etc/ you will �nd default con�guration �le
for rech. The Perl modules themselves live in the lib/ directory.

1

2.2 Installation

Get the package �le, decompress and unarchive it. To install the package use the following standard commands:

perl Makefile.PL
make
make test
make install

The perl Makefile.PL command will also execute the Configure utility which will help you to set the your
ReDIF home directory. Con�gure will ask you about the directory name and will suggest to create one if it does
not already exist. However it will not create more than one level of new directories.
The last step, make install installs rr.pm and other related libraries into a directory where perl will �nd them.
For this step you will most likely wish to use superuser rights, if you have them. If you need to make a private
installation of ReDIF-Perl use the PREFIX=DIR option of perl Makefile.PL command or execute Make�le.PL
with your private copy of perl. After this procedure the rech and rere scripts shall be installed to a directory
which is already included into your $PATH (e.g. /usr/bin). They can then be executed by from everywhere on
your system.
You do not need to determine the ReDIF home directory at the installation stage. In that case you use the
environment variable, REDIFDIR and run the software from that directory, or you give a command-line parameter
�rdir (or �redif.dir). The choice is yours.

3 The functions provided by rr.pm

To call a function from rr.pm, you need to make Perl �nd it by a use or require Perl statement.
use rr;
The rr.pm module provides a ReDIF reading interface through the functions rr::OpenRDF, rr::OpenDir, rr::OpenDirTree
and rr:NextTemplate . The �rst three of these are for opening the data source of di�erent types. They initiate
a data stream to be read. The rr::NextTemplate function iterates through the stream of data, opened by an
rr::Open... function. It allows you to access the actual data, template by template.

3.1 rr::OpenRDF

Use:
rr::OpenRDF filename

rr::OpenRDF filename [, filepos]
rr::OpenRDF filename [, filepos ,][showfilename]

This is the basic function, which initiates reading of a ReDIF �le filename. It returns 1 if successful, 0 if not.
The optional filepos parameter (integer number) shall be used to read the �le from a speci�c position within the
�le. This may be useful if you need to get a speci�c template as quickly as possible. By default the �le is being
read from the beginning, of course.
The optional showfilename shows how the �le should be referred to, i.e. the logical �le name. This will be the
name in the $::HashT{'FILENAME'} . Imagine that you read a �le called /home/tim/RePEc/bob/bobseri.rdf .
You may want it to be referred to as just bob/bobseri.rdf , because /home/tim/RePEc/ is not important and
will be the same for all ReDIF �les being read. In that case, use
rr::OpenRDF('/home/tim/RePEc/bob/bobseri.rdf', 0, 'bob/bobseri.rdf');)
This feature may appear super�uous, but is quite useful in a range of applications. By default, the logical name
is the same as physical filename.

3.2 rr::OpenDir

Use:
rr::OpenDir directory

rr::OpenDir directory [, showprefixlength]

2

rr::OpenDir directory [, showprefixlength][, filtersub]

Whereas rr::OpenRDF function initiates a one-�le data stream, this function opens a whole directory of ReDIF
�les for consequent reading template by template. Thus it is a higher level function. The exact �lename the
template has been read from is stored in the $::HashT{'FILENAME'} variable at each speci�c template. Following
the conventions of the Guildford protocol, only �les with the extension .rdf (case insensitive) are taken. The
function returns the number of ReDIF �les found if successful, 0 if not. You give the pathname of the directory
to be read in directory.
The optional showprefixlength parameter is for the same reasons as showfilename parameter at rr::OpenRDF.
But here it just sets how many of the starting characters of the directory to strip as meaningless to get a nice
logical name. So if you, say, read the directory /home/bob/RePEc/bob/dylan0 , and you want logical names of the
�les to be bob/dylan0/... then give length of /home/bob/RePEc/ as a showprefixlength , i.e.

rr::OpenDir

('/home/tim/RePEc/bob/dylan0',length('/home/tim/RePEc/'));) By default, the logical name is the same as the
physical full �lename.
If the optional filtersub parameter is speci�ed, it applies a user-de�ned �lter function to choose templates that
satisfy a user-de�ned set of criteria. This feature is described in Section 6.

3.3 rr::OpenDirTree

Use:
rr::OpenDirTree directory

rr::OpenDirTree directory , [showprefixlength]
rr::OpenDirTree directory , [showprefixlength], [filtersub]

This function is very much like the previous one, but it does a sub-directory tree search for all ReDIF �les. And
similarly it returns number of ReDIF �les found if successful, 0 if not. The showprefix and filtersub parameters
have the same meaning as for the rr::OpenDir function.

3.4 rr::NextTemplate

This function iterates the current data stream (previously opened) to the next template. It returns 1 if successful,
0 if not. In case of a one-�le stream rr::OpenRDF, if 0 is returned from the rr::NextTemplate it means that you
have reached the end of the �le. In case of multi-�le streams rr::OpenDir and rr::OpenDirTree it means that
you have reached the last correct template of the last ReDIF �le that was found.

4 How to access the data

There are two ways of accessing the data in your scripts. You may choose to use one of them or both (or none)
by setting appropriate options in the hash %rr::Options. The selected modes will in�uence the way reading goes
internally and each way of accessing the data takes some run-time resources to prepare.
The two major forms of the data presentation are

• full-text in one multi-line string variable

• structured hash variable

Both forms allow processing of one template by at a time only. We discuss the structured hash form �rst.

4.1 The structure of %::HashT

When the structured presentation is enabled, then after a successful rr::NextTemplate function, a variable
%::HashT will be �lled up with a ReDIF template data according to the following rules.

3

4.1.1 Rule (a): non-cluster attributes

Simple (non-cluster) attributes of the read template become keys of the %::HashT and these keys have the values
associated with them. The names of keys are converted to lowercase. For example, Handle is a simple, non-cluster
attribute. After reading a template, $::HashT{'handle'} (mind lower case!) will give you the value of the handle.
Example

print "Paper: $::HashT{'title'} ($::HashT{'handle'})\n";

If $T is a reference to the hash, then you may use it to access the data from %::HashT by writing a bit less code.
For example, in the following piece of code you can observe an example of using a reference to %::HashT instead
of using %::HashT itself. After reading a template the script processes it depending on its type:

Assigning to the $T variable a value of the reference to %::HashT
$T = \%::HashT;
#
some rr::Open... function call is assumed here
#
return if !rr::NextTemplate; # loading a new template
#
checking the template type:
#
if ($T->{'template-type'} eq 'redif-paper 1.0') {

print "Keywords: $T->{'keywords'}\n";
} elsif ($T->{'template-type'} eq 'redif-archive 1.0') {

print "Archive description: $T->{'description'}\n";
}

4.1.2 Rule (b): clusters

Clusters with templates are repeatable. In the hash %::HashT they are represented as elements of the @$::HashT{'author'}
array. Take the example of authors who described by the �Author-(PERSON*)� cluster. The �author� key of
%::HashT will reference to an array, which has as many entries as there are authors. Each value will point to an
independent hash. This has contains the individual author's �(PERSON*)� cluster data.
For example,

assume a paper template has been successfully loaded
print "The paper has " , $#$::HashT{'author'}+1, " author(s):\n";
#
now iterate through each author
foreach $au (@$::HashT{'author'}) {

now $au contains a reference to an author's data
print "The author is $au -> {'name'}\n" ;

}

or

initializations
$T = \%::HashT;
$authors = $T->{'author'};
#
an effort to be correct in English: checking the number of authors
#
if ($#$authors > 0) { $suffix = 's'; }

4

else { $suffix = ''; }
#
print "Author$suffix:\n";

4.1.3 Rule (c): attributes in clusters

Each cluster data will in turn be coded as a hash with cluster attributes as keys, similar to the rule (a). Clusters
attributes will have the cluster pre�x (e.g. author-) stripped o�. For instance, $::HashT{'author'}->[0]->
{'name'} will give you the �rst author's name, i.e. the value contained in the �Author-Name� �eld). Note that the
-> are here optional. If there are more than just one author, then $::HashT{'author'}[1]{'postal'} will give
second author's address, i.e. the �author-postal� attribute in the second author cluster. This rule is valid for all
clusters at all levels. If we have one cluster nested within another (like �workplace-(ORGANIZATION*)� cluster
in a �(PERSON*)� cluster), then the latter cluster's hash will give access to the second-level cluster hash. A long
expression like $::HashT{'editor'}[1]{'workplace'}[0]{'postal'} would specify the postal address of the
�rst workplace of the second editor of a series.

4.1.4 Other hash %::HashT elements

The hash will also contain some additional information that is local to your site. Uppercase letters are used for
this purpose. At the moment the following information will be provided:
%::HashT{'FILENAME'} is the name of a �le where the template has been read from
%::HashT{'STARTFPOS'} is the starting position of a template in the �le
$::HashT{'BUFFER'} will be assigned a value if only the Buffer option is turned on. It will contain a multi-line
string with the full-text of the preprocessed ReDIF template. This is actually the way how the second form of the
data can be accessed.
At the sub-hash (clusters) level there is one more technical uppercase variable: PREFIX, e.g. $T->{'file'}[0]
{'PREFIX'} or $T->{'author'}[0]{'PREFIX'} . This key stores the cluster attributes' pre�x: 'file-' and
'author-' respectively for the examples. The pre�x and cluster's hash keys may be used to get the original
attributes of the template by uniting them in one string.
Other uppercase keys of %::HashT may be used for internal or other reasons in the future as software development
goes on. User scripts can use the keys of %::HashT as listed above, but should ignore any other of them.

4.2 Bu�er output

With this method you get the whole template in one string variable. Each line contains one attribute, each
attribute is separated from each value by a ': ' combination, each line is separated from each other by a newline
character. Extra whitespace, tabulation or new-line characters are removed. All multi-line values are converted
to single-line. All attribute:value pairs come checked and pre-processed.
By default this data supply method is disabled. To enable this method you need to turn on the 'Buffer' option
of the %rr::Options (before opening a �le), for example

$rr::Options {'Buffer'} = 1;
rr::OpenRDF ($file) || die;

After a successful rr::NextTemplate , you get a template in a string $::HashT{'BUFFER'} . For example

print "\$::HashT\{'BUFFER'} = '$::HashT{'BUFFER'}' ;\n";

will, for example, produce the following output

$::HashT{'BUFFER'} = 'template-type: ReDIF-Series 1.0
name: CEP Discussion Papers
description: Discussion papers on Macroeconomics and Labour Economics
keywords: Macroeconomics, Labour
editor-name: Richard Layard
publisher-name: Centre for Economic Performance and ESRC

5

publisher-homepage: http://cep.lse.ac.uk/
maintainer-name: Anita Bardhan-Roy
maintainer-email: a.bardhan-roy@lse.ac.uk
handle: RePEc:cep:cepdps' ;

5 rr.pm Options

The user of rr.pm module can in�uence some aspects of the way it works. We have already mentioned several of
the options. Here comes a full description.
Option: 'HashT'
Default: enabled (1)
Meaning: This options sets whether to build the %::HashT variable from the template attributes and values. If
this is enabled, the full template data will be put into %::HashT. If disabled, only the FILENAME, STARTFPOS and
BUFFER keys will have a value in %::HashT.
option: 'Buffer'
Default: disabled (0)
Meaning: This option sets whether you want to get a full-text of a template in %::HashT{'BUFFER'} . By default,
it is disabled.
You may enable both options, but we recommend you to choose only what is necessary to avoid performance
losses.
Option: 'BufferEmpty'
Default: disabled (0)
Meaning: If 'Bu�er' is enabled this option sets how to treat empty attributes (with null value). If enabled, empty-
value attributes will be included into the %::HashT{'BUFFER'} and as a %::HashT{...} lower case attribute,
otherwise it would be ignored as meaningless.
Option: 'ReadX-Attr'
Default: disabled (0)
Meaning: This option determines whether to process and show to the so-called X-attributes. X-attributes are
the attributes that start with the 'X-' sequence. If disabled, X-attributes will be ignored. If enabled they will be
included into %::HashT{'BUFFER'} and as a %::HashT{...} lower case attribute.
There are some other options used with by the rech and rere scripts. They should not be interesting to the rr.pm
users.

6 Search �lters

When you use the rr::OpenDir and rr::OpenDirTree functions for accessing a bunch of ReDIF �les, you may
set a �lter for the templates. Such a �lter will guarantee that while going through an opened data stream with
rr::NextTemplate , you will only get the templates which meet a certain criteria. For example, you may want to
choose templates by type: archive, series, paper, article, software and so on.
To execute such a search with �lter, you prepare a function that checks the criteria you need and returns the
result. If the template is �ne, it returns true (e.g. 1), if not it returns zero or the unde�ned value.
When you call the rr::NextTemplate subroutine, it will �nd a next piece of data for you and then run the �lter
you have set. If the �lter returns true, then rr::NextTemplate will allow your programme to process it. If �lter
returns a false value, rr::NextTemplate will look for a next one template to o�er.
Here is a small example of using the �lter. It should make things clearer.

$RepecRemo = mirrored RePEc archives data directory
#
this is a filter function that checks a criteria
sub articlefilter {

return 1 if $T->{'template-type'} eq 'redif-article 1.0';
return 0;

}

6

sub checkOpenDirTree {
my $f, $c, $l = length ("$RepecRemo") + 1;
$T = \%::HashT;

executing a search with a filter here:
$f = rr::OpenDirTree ("$RepecRemo/cre/", $l, \&articlefilter) ;

print "\nOpenDirTree $RepecRemo/cre/ : found ", $f ,
" .RDF file entries\n" ;

processing ... (only article templates will get here)
while ($c = rr::NextTemplate) {

print $T->{'FILENAME'} , ' : ' , $T->{'handle'}, "\n";
$count ++;

}
}

This checkOpenDirtree subroutine will seek for ReDIF �les in the cre archive directory and in its subdirectories
and will report �lenames and handles of each �article� template found.

7 The ReDIF::init.pm module

If you are writing an application that just needs to work in ReDIF environment and wants to get the same
installation and con�guration info as included software does, you may use perl module ReDIF::init.pm. Function
initialize() from that package will look for a con�guration information saved in a Perl-reachable module, will
analyze the @ARGV array for command-line arguments, the environment variables and the current working directory,
if necessary. It can help your program to identify the ReDIF home directory, and it's type i.e. Guildford protocol
complient or stand-alone. It will �nd the con�guration �le for your program in the apropriate directory (if it needs
one).
It will report the main con�guration values worked out to the user (unless you make it silent, which is easy) and
will save them for you in the %ReDIF::CONFIG hash variable. It will not import any symbols to your package's
namespace (unless you ask it to).
For a detailed discussion of this module please see it's manpage (manReDIF::init) or pod data in lib/ReDIF/
init.pm.

7

